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Abstract Recently the author together with R. Bank has developed, implemented ;:x;’_-.:
“a

L J
17,
N

and successfully applied a continuation technique for the numerical solution of

° B
parameter-dependent nonlinear elliptic boundary value problems. The method was f:_‘.,,f,_:ﬁ
integrated into an existing multi-grid package based on an adaptive finite Eﬁ:ﬁ:’%

® element discretization. 1}e«'\:;resent: the continuation method and provesan ?ﬂb}
impqrt:,ant; thgo'retical result for the corrector iteration. For the Bratu problem _"

R YOO ¥ Y fy o~
: Au = ‘}e on '::h: square with homogeneous Dirichlet conditions Iwei show- how ’,
¢ spurious solutions may be encountered while computing relevant solutions, how "

the program handles those and how it allows to detect them.
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1. Introduction

In the following we consider the parameter-dependent nonlinear problem

(101) G(U,a) = 0,

where G : X" x RP » Xm, X a suitable function space and a a vector of real
parameters. (1.1) will typically represent a parameter-dependent nonlinear
elliptic system of dimension m and order two. Important examples are the VLSI

device simulation equations

gy1(u,vyw) = - Au+ etV et -ky =0,
(1.2) g2(u,v,w) = V-une“"v 7vi+k =0,
g3(u,v,w) = - V-upew-u 7w+k=0.

RS

In this case the parameters a enter the boundary conditions if, for example, {ﬁjﬁ:ﬁ;
:\':-:"_\"

current-voltage characteristics are to be determined (cf.[3]). g
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P
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The solution manifold G-1(0) of (1.1) may have a very complex structure.
In practical applications it is frequently desirable and sufficient to compute
certain cross-sections of it, i.e. all parameters a are kept fixed at certain

values and for simplicity suppressed except one which we will call A. A simple
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graphical representation of this cross-section may be obtained if a functional

e
0
-( ',

P4

o
‘o
)

L
X

‘v

of the solution is depicted ve}sus A. It should be noted, however, that usually
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1n these applications such functionals are in fact important pieces of

information, such as the currents for (1.2).
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We assume that a vector

(1.3) R(u(x)), R: X"~ Rk

of differentiable functionals is given and that most of the important

information about the problem can be obtained from the k x p diagrams

.
e

L BODARENNRE
|

(1.4) R1 = Ri(U(“j))’ i=1, ..., k, 3J=1, ..., p —
RN
and the corresponding solutions. g&z;s&s
The solutions u(}), X = aj, in (1.4) and from them the curves Ri(u(k)) ?;;g:;u
usually have to be computed in a continuation fashion. Starting from a known :
solution u(}y) another solution is computed by utilizing a predictor-corrector
scheme. Frequently an initial solution to start this continuation procedure is
not known and has itself to be determined from an approximate solution. Along
the solution curves singular points have to be expected and our goal is to
provide methods to locate these points, to overcome turning points and to switch E;:i“ >
branches at bifurcation points. ;ﬁ??%il
In the following section we will outline a continuation algorithm that has :irgff\:
been successfully used for the scalar case (m = 1 in (1.1)). It provides an :2£flkt
efficient and robust method and has been implemented for a general class of g;:f}i
second order elliptic boundary value problems discretized by finite elements in iE:E;.'
RN
[2]. The continuation method is applied on a coarse triangulation of the given E;ii?'
domain and fine grid approximations at arbitrarily specified points are obtained :T
by multi-grid. ??
o e
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2. The Continuation Method

In the following we assume that a choice of the parameter A = a, in (1.1),

§
(1.3) and also of the functional Ry in (1.4) has been made and denote (1.1) by
(2.1) G(u,2) =0, G : X" xR» X",
and R1 by r.

The parametrization of the solution u of (2.1) by A and thus of r by A need
not be possible in general. Let s denote the arclength along a solution curve
(u,2) = (u(s), A(s)) of (2.1). Then under sufficient smoothness and regularity

assumptions this latter dependence is differentiable and thus (Gg = Gu(uo, xo)

etc.).
(2.2a) c? dg + 6 % =0,
(2.2b) Tugh2 + X2 = 1

in a solution (ug,XAg) = (u(sg), A(sg)) of (2.1). Here, subscripts stand for
partial derivatives and a dot for differentiation with respect to s,

In singular points (ug,Ag) of (2.1) the linear operator G& in (2.2a) is
singular and, for example, a solution by Newton's method breaks down. This
singularity may be removed or reduced by augmenting (2.1) by a normalizing

equation, a well-known example of which is

(2.3) Ny(u,%,0) = 0 dglu-ug) + (2-0)3g(A-1g) - 85 = 0

] '-'l".
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which approximates (2.2b). o is called the pseudo-arclength parameter. ©
satisfying 0 < © < 2 may be used as a weighting parameter.

Instead of (2.3) we propose to use

(2.4) Nr(u,k,o) = 9§o(r-ro) + (Z-B)XO(X-XO) - 80 =0,

where T, = r(uo), 50 = (E% r(u)]0 = o and r denotes the above functional. From
(2.4) we see that the three values 8 = 0,1,2 are special in the sense that for

8 = 0(2) the augmenting equation characterizes points with a fixed A(r) - value,
while for @ = 1 this point lies on a hyperplane orthogonal to the solution arc
in (rg,%q).

This suggests to use target values in the two (physically relevant)
variables r and A. Such a strategy seems appropriate as long as starting from a
point on the solution curve another point corresponding to a suitably chosen
target value can be computed in a small number of (corrector) iterations. This

was achieved for the scalar case of (2.1) and the choice
(2.5) r(u) = Tu".

The following class of nonlinear boundary value problems in the plane

- 7 « a(x,y,u,%,r) + f(x,y,u,7u,r) = 0 in @,
(2.6) u=g(x,y,X) on 3,
a°* n= gz(x,y,u,k) on 392 = 39\391,

was considered. Here, @ is a connected domain in R? with boundary 3, n is the

-
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unit normal vector on 3Q, a = (al,az)T and a;,az,f,9;,9> are given scalar
functions.

In [2] the program PLTMG, an implementation of an adaptive finite element
multi-grid method combined with the continuation technique presented below is
described in detail. In addition to some theoretical results on the
continuation method [12, 13] contain numerical results for several problems from
the applications including problems with turning-points, symmetry-breaking and
other bifurcation points as well as parameter-switching for cases depending on
several (p > 1 in (1.1)) parameters. [13] also contains a comparison with the
classical pseudo-arclength continuation method. Other problems to which the
program has been applied successfully are Steklov eigenvalue problems for which
the Dirichlet condition in (2.6) is parameter-dependent,

The predictor step which is crucial for the performance of the method

determines predicted values of the form

u (1+v)ug + Bug
(2.7)

A Ag + aX
p 0 0

such that a,8,y satisfy the three equations

N(up,Xp,o) = 0,

1]
(=]

(2.8) (UO,G(UPQXp))

1
o

(Go,G(up,Xp))
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[ in a least-squares sense. Here it is assumed that X is a Hilbert space and a4t
ut\:N ,
(. , . ) denotes its inner product. :::::
ol
In the corrector iteration the augmented system 2Ty,
® b,:.,':.,
Glu,2) T T iz
(2.9) Fly) = =0, y =(u,) R
N(u,X,0) A
BNy
o is solved by Newton's method starting in (up,)‘p). The restriction of the P—
problem (2.1) to the (r,\)-plane in case N = Nr is used in (2.8) introduces an
additional singularity in exceptional points.
C If in a solution (up, Ag) simultaneously z.'o = 0 and io = 0 then the &3;_‘-".
-"J'__-:
normalizing condition (2.4) is not well-defined. This situation occurs in f‘-'\::,},
Nl
symmetry-breaking pitchfork bifurcation points, see [11]. We propose to switch :;"-:
| temporarily to the augmenting equation (2.3) which, as explained in [12] may be Ef, -
RN
viewed as asymptotically equivalent to a version of the generalized inverse éf;.-;:
Sy
'
iteration ([10]) exploiting symmetries in such bifurcation points. The precise ;‘.'r}_r._
LA
] choice of N is given by (cf. [13]). E_
li‘ol(el{joﬂ :N=NO,9¢0,
C
(2.10) |EO| > (1-€) "ag" ¢+ N=N_, 8%0, 8 =0,
| € Mp' <rg < (1-6) Mgt : N =N, 0<8 <2,
| ¢
j ¢

b e e e e e e e elea » . - . - .~ g™ -
R RPN N AN I AN NN ALRON AN 3 .'n;q- ,r_‘.’\.r\f__.»__ .
507 v 2505 SRS PR NI W 32 VR W
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» 3. The Corrector Iteration 8.

SUSAN

A point (up, Ap) computed by the predictor of the previous section is used NG

® as a starting guess for an iterative solution of the augmented system (2.9).
This is done by Newton's method and thus the Jacobian KNS

R N
(3 1 ) F _ GU GA :.'f‘:.!':‘f
' y \N N
u A

5 5
2
/!
'l

A Iies

a, 0 8
5, .
D

S T d

has to be evaluated and inverted.

RN
2
L

f

While (2.10) prescribes which N to choose it does not completely define the

augmenting equation. The weighting parameter © still has to be picked and we ::::“::‘
assume that r respectively X is not used as parameter to continue past a E:E-Eu
° turning point in r respectively X. This yields 6 # 0 if io =0and 8 # 2 if é‘f?’!"
:.'0 = 0. Under these assumptions it was shown in Proposition 4.2 of [13] that F \::::’rz':f
is reqgular except in bifurcation points. EZEE‘E:
° When computing in a neighborhood of a bifurcation point the growth of t{'*:
nFy'lu is crucial for the convergence of Newton or other iterative methods used }.\:\f.
as corrector, cf. [7]. We give here the detailed proof of Proposition 4.3 in '-\.-::
p [13]. Let locally near the simple bifurcation point yy = (ug,}y) solutions be '-;::T?'.:.~
parametrized by s such that without restriction of generality yg = (u(0),x(0)). -
i We assume in the following that 90 = (G(O),i(O)) is a nondegenerate ray in the ;
sense of [8]. <

&

RN
N
Theorem 3.1 If the normalizing condition N is chosen according to (2.10) then ::-::-:'-C}
_\:,\:_\ '
on any of the branches passing through the simple bifurcation point 'S"':'::
Y
¢ yo = (u(0),x(0)) of (2.1) for & > 0 sufficiently small -
¢
B A e A N e A o S T e S
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(3.2) “Fy'l(y(s))" = 0(|s|-‘), 0 < ,sl < 8.

Proof. As mentioned in [13] we have to generalize the proof of Theorem 1 in
[{8). This proof covers the case N = N, so that it remains to consider

N = Nr' We note that the row-vector ag = (Nu’NA) in (3.1) is not constant in
this case, in fact

(eéou(s)

_, (z-e)io) .

(3.3) ap(s) = o)

Let us further denote H(y) = G(u,X) and thus

n+1 n H!
H' = (Gu,GX) : R > R, Fy = (ao)

As in [8] we introduce the one-dimensional space X; C Rn+1 spanned by

;0 = (Go,io)T on one of the branches, the one-dimensional subspace X; < Rn+1
such that the kernel K(H'(yp)) satisfies K = X; @ X, and the {(n-1)-dimensional
subspace X3 such that R™*' = X, @ X, ® X3. Similarly let Y; = R,

Y3 = R(H'(yg)), where R(A) denotes the range of the linear operator A, and let
Y2 be the one-dimensional subspace of R" such that R" = Y2 ® Y3. We define the

orthogonal projectors Q : R" > Ysand T - Q : R" » Yz. For 0K ,sl < § we

define the linear operator B(s) : X; x X x X3 + ¥} x Y x Y3 by
B(s)(x1,x2,x3) = (ag(s)(x1+x2+x3), (I-Q)H'(y(s))(xy+x2+x3), QH'(y(s))(xy+xp+x3)).

B(s) is equivalent to Fy(y(s)) in the sense that
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L
F = CBD
y
where C and D are regular matrices independent of s. B(s) can be decomposed in
® a natural way into nine suboperators Bij(s) : X1 > Yj’ 1<1i,j £3. From the f,.
l,-:
above definitions it follows that By;(0), B3,(0), B3;(0), B3,(0) and By3(0) -
o
vanish identically. From (2.10) we conclude the crucial fact =
® N
. 2 2 :J'i"'
ao(O)yo = 91‘0 + (Z—S)Xo £ 0 ,-',:'.'
3
¢ This and the definition of X3, Y3 imply that B;)(0) and B33(0) define i;
<.
bijections, while as in [8] it follows that ézl(O) = 0 and that EQZ(O) is a $i~
o
“»
bijection between Xy and Y,. We can thus expand B(s) in a neighborhood of s = 0 :(ﬁ
as .’.‘."?.
o '
B11(0) B12(0) B13(0) =
B(s) = 52621(0) 5622(0) 5623(0) + h.o.t.
°® sB31(0)  sB32(0) B33 (0)
) where Bij(o)’ Bij(o) and Bij(o) are linear operators from X1 into Yj which are
C uniformly bounded with respect to Ss. Thus det B(s) = 0(|s|) and hence B! (s)
can be written as
C Ey1(s) s=1E 2 (s) E;s3(s)
B-1(s) = | sEz,(s) s~1E52(s) Ez3(s)
sE3;(s) E32(s) E33(s)
¢ where similarly the Eij are uniformly bounded and E32(0) = (Baz (0! 1s
regular.
|
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4, Spurious Solutions

It is well-known that discretized problems possess frequently many more

solutions than the continuous problems. All discrete solutions that do not

correspond to solutions of the continuous problem and disappear for h + 0, h the

discretization parameter, are called spurious or numerically irrelevant

solutions. If we consider the simple model equation

(4.1) - Au = Af(u)

then there are essentially two types of those solutions. One type bifurcating
from A = * = in case f(u) has zeros and the other bifurcating from "ul = = if
the growth of f is sufficiently strong. It might be argued that not too much
effort should be spent on investigating those spurious solutions if the main
interest is that of approximately solving the continuous problem. There are,
however, at least two counter arguments.

First, in a multi-grid context where one hopes to be able to use rather
crude coarse grids on which the continuation will be done, one has to be aware
of the spurious solutions since for 'large' h they are present for 'small’
values of 'ul! respectively X and thus may be more easily encountered. Second,
it has been shown recently ([9]) that for the second type of spurious solutions
some of these may bifurcate from a relevant branch. Thus they definitely will

be encountered and it becomes necessary to distinguish between spurious and

relevant solutions.

If we specialize (4.1) to

u n
(4.2) - Au = e in @ = [0,1], u = 0 on 30
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then the proof in [9] covers the case n = 1 and a uniform grid of an even number
of points. The midpoint of [0,1] where the relevant solution attains its
maximum is then not a grid point. The discrete solution attains its maximum in
the two neighboring points and from this branch bifurcate two branches attaining
their maximum in either of these points.

We had observed these solutions and their bifurcation previously when
numerically solving (4.2) for n = 2 by discretizing with the standard difference
method on a corresponding grid. We also have applied a multi-grid method to
compute spurious solutions ([14]). Since our goal is not to contribute to the
knowledge about the spurious solutions but rather to provide a general purpose
and if possible foolproof program to solve a general class of problems, it is
natural to investigate the above situation with the program PLTMG.

Our expectation is that the implemented continuétion method allows us to
follow the spurious solution branches because these are genuine solutions of the
discrete problems. On the other hand the multi-grid process using several
discretizations simultaneously could help to identify spurious solutions. But
additionally all the other features offered by the program as the adaptive
refinement and the error estimators will have their impact on the solution
process respectively may give other hints about which solutions are relevant.

Since the program uses a finite element discretization with piecewise
linear elements we try to come close to the above discretization. The unit
square is subdivided into nine subsquares of length h = 1/3 and then all these
squares are divided into two triangles by the SW - NE diagonal. This way the
Laplace operator will be discretized in the same way as by the five point star
difference method. The right-hand side, however, in the finite element context

discretized by a quadrature formula will be different from the pointwise
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discretization of the difference method. This will introduce a bias in the
SW-NE direction and we do not expect the relevant solution to attain its maximum
in the four interior nodes.

While the numerical results presented in the following, of course, make no
statements about the mathematical properties of the problem they provide some
valuable insight into the practical use of the program and the numerical
solution in the presence of spurious solutions.

The branch starting at A = 0, r = 'u" = O for the above discretization with
four nodes attains its maximum, as expected, in the points (1/3, 1/3), (2/3,
2/3) and has two equal but smaller values at (1/3, 2/3), (2/3, 1/3). When
following this curve beyond the limit point another sign-change of det (Gu) is
encountered. Even a tracing of the neighborhood of this point with small
continuation steps shows an abrupt change of the sign. When asked to locate
this point the program ends up on a different branch and even a subsequent
branch switching does not lead back to the relevant branch. This suggests that
instead of bifurcation a perturbed bifurcation seems to be present. This is not
so relevant here, since the fact remains that a sign-change seems to indicate
bifurcation and naturally a spurious branch is found. Table 4.1 shows the
continuation to and the location of the 'bifurcation' point. In the tables NI
denotes the number of corrector iterations and § is a quantity that changes sign
at simple bifurcation points (cf. [2]).

In the following we present multi-grid results for four different cases.
First we have followed the relevant branch up to r = 4.5 respectively r = 5 and
computed a 3-grid solution for fixed norm with uniform and adaptive refinement.

Table 4.2 contains only the refinement results.
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26240
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NI A LITL r det(Gu) )
Continue to A = .1 then tor =1, r = 3, r = 3.44, r = 3.46.
1  0.000E+00 0.000E+00 0.995£+00 0.000£+00 0.492E 5 0.200E+01
1 0.100E+01 0.116E+00 0.992E+00 0.128E+00 0.276E 5 0.180E+01
1  0.390E401 0.100E+01 0.244E+00 0.970E+00 0.190E 3 0.129E+00
2 0.156E+01 0.300E+01 -0,756E+00 0.653E+00 -0.623E 3 0.592E+00
2  0.11E+01  0.344E+01 -0.669E+00 0.741E+00 -0.185E 2 0.138E-01
1 0.109E+01  0.346E+01 -0.664E+00  0.745E+00 0.176€ 2 -0.130E-01
Determinant changes sign; find bifurcation point by secant method on §.
1 0.110E+01 0.345E+01 -0.121E-01 0.130E-01 -0.113E -1 0.809E-05
1 0.110E+01  0,345E+01 0.192E+00 -0.215E+00 0.123 0 -0.883E-04
1 0.110E+01  0.345E+01 0.497e-06 -0.591E-03 0.4826 -2 -0.369E-09
Table 4.1 Continuation along relevant branch, detection of spurious branch.

A posteriori error estimates based on solving local problems with higher-order
elements [5] are evaluated by the program and in Table 4.4 we give the number of
estimated correct digits in three different norms.

Following the irrelevant branch that attains its maximum at (1/3, 1/3) to
r = 5.5 and again refining uniformly and adaptively ylelded the results in Table
4.3. We see that for the adaptive refinement it seems impossible to conclude
from the error estimations alone that the solution is irrelevant, while for the
uniform refinement the error was estimated as bigger than the solution resulting
in a negative number of estimated correct digits. In this latter case al#o the
solution on the finest grid did not attain its maximum at (1/3, 1/3) but closer

to the center of the domain; i.e. the refinement had led onto a different

spurious branch.
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NI A rut A r det (G ) 8 it

u ¢
"~ N

SN

s

b Level 1 solution at r = 5. ~ L
2 0.264E400 0.500E+01 -0.255€+00 0.962E+00  0.865E 4  0.891E+00 PR,
DTN
Refine uniformly. N
Level 2 solution, no. of vertices 49, RCSA SO
6 0.296E-01 0.500E+01 -0.566E-01 0.993E+00 0.530E 5 0.885E+00 #g:;fi
-_<.-...:.\
ATy
Level 3 solution, no. of vertices 169. \:;;;ﬁﬂ
8 0.836E-02 0.500E+01 -0.230E-01 0.990E+00  0.626E 5  0.251E+00 PR
»%s el
Level 1 solution at r = 4.5. ’\"fa
2 0.431E+00 0.450E+01 -0.379£+00 0.921E+00 0.393t 4 0.824E+00 N

Refine adaptively. -"-".;; ‘
Level 2 solution, no. of vertices 51. = -
5 0.598E-01 0.450E+01 -0.1156+00 0.983E+00 0.334E 5 0.465E+00 :".s'"\-"‘:'"

Level 3 solution, no. of vertices 265. NASYOLN
9 0.402E-02 0.450E+01 -0.315E-01 0.862E+00 0.482E 5 0.504E-03 ;—l 2
o

2
<
g

SN A
Table 4.2 Results of refinement on relevant branch. :“.’lj{“

s
SN
1

One of the possible ways provided by the program to depict the results

7,7, L
»

.-‘
»
4
»

4 |
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H .
LY o b
2 . N .
L 2%

graphically is to generate a histogram. Over a square grid numbers from 0 to 9

S'
X
s

are printed covering uniformly the range of the solution values from minimum to
maximum. In Figures4.1 and 4.2 we see which solutions were computed on the

coarsest and on the finest grid for uniform and adaptive refinement.
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L L

>0
L ]
.
Xl
XX
S84 -

NI A LITL

[/

Pl
&

det(Gu) &

R
L d
X

PN
A
o, by
»
L

o Level 1 solution at r = 5.5.
2 0.560E-01 0.550E+01 -0.772E-01 0.994E+00 -0.839%E 5 0.219E+01

',:?

FuEAT
a_ s _ & 4 “
AR AN

N

Refine uniformly.
PY Level 2 solution, no. of vertices 49.

9 0.328E-01 0.550E+01 -0.367E-01 0.508E+00 -0,.361E

W
f)
h]

wvr
s BRAS

-0.117£+00

Level 3 solution, no. of vertices 169.
10 0.474£-02  0.550E+01 0.112E-01 -0.990E+00 0.615E

g
Y
0.182E+00 {~%n

©
w
-" ! -‘

"
Refine adaptively. :3:::?'
Level 2 solution, no. of vertices 41, ?i:::$'
4 0.968E-02 0.550E+01 -0.194E-01 0.994E+00 -0.824E 5  0.691E+00 e
° | b
Level 3 solution, no. of verticies 174. i"::r\'
7 0.111E-03  0.550E+01 -0.386E-03 0.999E+00 0.638E 5 0.776E-01 {\;Q;:
R A AN
s
TN
. N
Table 4.3 Results of refinement on spurious branch.
€ Relevant Solution Spurious Solution
Norm
Uniform Adaptive Uniform Adaptive
i 0.526 0.593 -0.955 0.448
L2 1.381 1.268 -0.312 1.198
L= 0.965 1.186 -1.099 1.183

Table 4.4 - Numbers of estimated correct digits.
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Figure 4.2

000000000000000
000000000000000
000011111111100
000122222222100
001233333332100
001234444432100
001246655432100
001367775432100
002578876432100
014689876432100
024688764332100
024666532221000
024444211110000
022221000000000
000000000000000

Figure 4.1
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000000000000000
000000000000000
000011111100000
000112222111000
001123332211000
001234443321100
012345765321100
012357985432100
012358975422100
012356764321100
001234543221000
001223332211000
000111221110000
000000000000000
000000000000000

000000000000000
000000000000000
000000000000000
000011111000000
000111111110000
001122222110000
001233332211000
001244433211000
012357643211000
012359743211000
001345543211000
001233322110000
001112211100000
000001100000000
000000000000000

Histograms of the spurious solution on the coarsest grid

and for uniform and adaptive refinement.

000000000000000
000001111122220
000023333444420
000234455666420
002356677886420
013467889986410
013468899975310
013578999875310
013579998864310
014689988764310
024688776653200
024666554432000
024444333320000
022221111100000
000000000000000

000000000000000
000000000000000
000011111110000
000111222211000
001122333221100
001123454322100
001234576432100
001235797532100
001234675432100
001223454321100
001122333221100
000112222111000
000011111110000
000000000000000
000000000000000

000000000000000
000000000000000
000000111100000
000011111111000
000112222211000
000122333221100
001123454321100
001223595321100
001123564321100
001123333221000
000112222211000
000111121110000
000001111000000
000000000000000
000000000000000

Histograms of the relevant solution on the coarsest grid and
for uniform and adaptive refinement.
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